Views Navigation

Event Views Navigation

Calendar of Events

S Sun

M Mon

T Tue

W Wed

T Thu

F Fri

S Sat

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Statistics and Data Science Seminar Series Gregory Wornell

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Statistics and Data Science Seminar Series MIT

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Statistics and Data Science Seminar Series Tselil Schramm

0 events,

An Information-Geometric View of Learning in High Dimensions

Gregory Wornell (32-155)
32-155

Abstract: We consider the problem of data feature selection prior to inference task specification, which is central to high-dimensional learning. Introducing natural notions of universality for such problems, we show a local equivalence among them. Our analysis is naturally expressed via information geometry, and represents a conceptually and practically useful learning methodology. The development reveals…

Find out more »

Jingbo Liu

MIT
E18-304

Abstract Concentration of measure refers to a collection of tools and results from analysis and probability theory that have been used in many areas of pure and applied mathematics. Arguably, the first data science application of measure concentration (under the name ‘‘blowing-up lemma’’) is the proof of strong converses in multiuser information theory by Ahlswede,…

Find out more »

Efficient Algorithms for the Graph Matching Problem in Correlated Random Graphs

Tselil Schramm (Harvard University)

Abstract: The Graph Matching problem is a robust version of the Graph Isomorphism problem: given two not-necessarily-isomorphic graphs, the goal is to find a permutation of the vertices which maximizes the number of common edges. We study a popular average-case variant; we deviate from the common heuristic strategy and give the first quasi-polynomial time algorithm,…

Find out more »


MIT Institute for Data, Systems, and Society
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764