Views Navigation

Event Views Navigation

Bridging-based Fact-checking Moderates the Diffusion of False Information on Social Media

Johan Ugander (Stanford University)
MIT Building E18, Room 304

Abstract: Social networks scaffold the diffusion of information on social media. Much attention has been given to the spread of true vs. false content on online social platforms, including the structural differences between their diffusion patterns. However, much less is known about how platform interventions on false content alter the engagement with and diffusion of such content. In this work, we estimate the causal effects of Community Notes, a novel fact-checking feature adopted by X (formerly Twitter) to solicit and…

Find out more »

Finite-Particle Convergence Rates for Stein Variational Gradient Descent

Krishna Balasubramanian (University of California - Davis)
E18-304

Abstract: Stein Variational Gradient Descent (SVGD) is a deterministic, interacting particle-based algorithm for nonparametric variational inference, yet its theoretical properties remain challenging to fully understand. This talk presents two complementary perspectives on SVGD. First, we introduce Gaussian-SVGD, a framework that projects SVGD onto the family of Gaussian distributions using a bilinear kernel. We establish rigorous convergence results for both mean-field dynamics and finite-particle systems, proving linear convergence to equilibrium in strongly log-concave settings. This framework also unifies recent algorithms for…

Find out more »

How should we do linear regression?

Richard Samworth (University of Cambridge)
E18-304

Abstract: In the context of linear regression, we construct a data-driven convex loss function with respect to which empirical risk minimisation yields optimal asymptotic variance in the downstream estimation of the regression coefficients. Our semiparametric approach targets the best decreasing approximation of the derivative of the log-density of the noise distribution. At the population level, this fitting process is a nonparametric extension of score matching, corresponding to a log-concave projection of the noise distribution with respect to the Fisher divergence.…

Find out more »


MIT Institute for Data, Systems, and Society
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764