LIDS & Stats Tea Talks Yuval Dagan
Generalization and Learning under Dobrushin’s Condition
Statistical learning theory has largely focused on learning and generalization given independent and identically distributed (i.i.d.) samples. Motivated by applications involving time-series data, there has been a growing literature on learning and generalization in settings where data is sampled from an ergodic process. This work has also developed complexity measures, which appropriately extend Rademacher complexity…



