Loading Events
  • This event has passed.
Other Events

SES Dissertation Defense

September 16, 2024 @ 1:00 pm - 3:00 pm

Leon Yao (IDSS)

E18-304

Leon Yao

Causal Inference Under Privacy Constraints

ABSTRACT

Causal inference is an important tool for learning the effects of interventions in observational or experimental settings. It is widely used in many fields such as epidemiology, economics, and political science to find answers like the average treatment effect of a medical procedure or the individual treatment effect of a personalized ad campaign. In commercial applications, the era of big data allows companies to increase their experiment volume, incentivizing them, in turn, to collect more user data. On one hand, large volumes of data are necessary to train generative models like ChatGPT. At the same time, companies’ increasing use of user data has drawn heavy criticism and consumer backlash, incurring legitimate concerns about privacy and consent. As concerns over user data safety and privacy grow, rules and regulations like GDPR change what kinds of data companies and researchers can acquire and how they can analyze the data.

The necessity of now performing causal inference under a range of privacy constraints has carved new spaces for research at the intersection of causal inference and privacy. In my thesis, I will be exploring three paradigms for protecting user data — data minimization, differential privacy and synthetic data — and how to perform causal inference techniques under these new privacy regimes.

COMMITTEE

Dean Eckles (chair, advisor), Alberto Abadie, Manish Raghavan

EVENT INFORMATION

Hybrid event. To attend virtually, please contact the IDSS Academic Office (idss_academic_office@mit.edu) for connection information.


MIT Institute for Data, Systems, and Society
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764