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It is important to begin this document by recognizing that MIT is in a fortunate position.   We are 
very lucky to have access to the Broad Institute and to the superb staff and facilities at MIT 
Medical; relative to other entities (e.g. companies and services), our demographics are quite 
young and technically literate; and we have resources at our disposal that may not be available 
to other educational entities. These are enormous advantages and we should not forget the 
relative strength of our position in the current landscape.  
 
Having said that, it will take all of our efforts to navigate this crisis. In this document, we will 
focus on the current testing landscape, but testing is just one tool in the considerable arsenal of 
weapons that we can bring to bear on the virus (e.g. masks, ventilation, scheduling, hygiene, 
education, etc.).  

 

Figure 1: The top row of boxes show approximate measured values of R​0​ before (purple) and after (light 
green) the lockdown, on a cruise ship (​the Diamond Princess​, blue), and estimates for super spreading 

events such as the ​Guangzhou restaurant, the Canandian curling event and the Korean call center 
(orange).  The subsequent rows on the chart show estimates of what the effective R​0​ would have been for 

a given policy, all else being equal.  For example, the dark green box in the second row shows the 
decrease in R​0​ if there was no social distancing (dark green = no social distancing) but everyone in the 
population wore (well-fitted) 80 TPI 2-layer cotton masks; in this case, the masks ​drop the average R​0 
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from about 4.5 (first row) to 1.8 (second row)​. Here Q7 refers to a testing strategy of randomly testing 
every person in the community weekly; similarly Q3 refers to testing everyone every three days. The 

mask estimates in this figure  assume (near) perfect compliance (i.e. everyone wears a mask).  

R​0​ Primer: How much can we change / control R​0​?  
 
The rate at which a virus spreads is characterized by the ​reproduction number ​R​0​, i.e. the total 
number of people that one contagious person infects during the course of their illness.  R​0​ lumps 
together a mish-mash of biological and behavioral parameters -- such as average number of 
contacts per day, lifespan of the virus in droplets, efficiency of ventilation systems, etc. -- into a 
single number which can be inferred from the measured rate of new cases in the population. 
This effective ​R​0​ must be kept below 1 in order to keep the spread of the virus under control.  ​To 
illustrate the impact of different environments, behaviors, and interventions, the figure above 
shows rough values of R​0​ that have appeared in the literature and popular press for Covid-19. 
(Note that R​0​ changes as behavior and policies change so it will evolve in time; these time 
dependent R​0​’s are sometimes referred to as R​t ​).  

There are a few messages from this figure that are worth emphasizing.  First, we have included 
it to provide some intuition for the ranges of R​0​ we might expect to encounter in the Fall and the 
impact of various interventions. It is clear from the data that we have a number of measures at 
our disposal (e.g. social distancing and face masks) that can be quite effective in reducing R​0 
and stabilizing the system, and which have proven to lower R​0​ in many situations.  Second, R​0 
in the superspreading events (e.g. large groups of people in poorly ventilated rooms, frat 
parties, etc.) may be orders of magnitude larger than in other scenarios (note the log scale).  As 
we shall see below, ​there is no amount of testing that will save us from those types of events so 
we are better off keeping people out of environments where high concentrations of viral particles 
may accumulate.​ However, in the more common scenarios on the chart, viral testing combined 
with isolation is one of the most important levers we have in controlling the spread of the 
disease.  

Testing Basics 

One of the challenges with this virus is that a large number of carriers are “hidden” i.e. a 
significant fraction of the population may be contagious but asymptomatic. Therefore we need 
strategies that limit the number of people in this group who are interacting with the community; 
the levers we have to control the number of people in this subset fall into two categories: (1) 
slow down the rate of people entering the population (via social distancing, improved hygiene, 
wearing masks, etc.) or (2) speed up the rate at which we remove people from that population 
via testing + isolation. It is worth emphasizing that a key concept in the second strategy is 
speed: the faster we can identify infected people and remove them, the better our control of the 
system. 
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How much testing do we need? 

To prevent the number of infected people from growing, we need to isolate infected people from 
the community faster than additional people become infected.  If we test for the presence of the 
virus by randomly sampling the population, ​this criterion can be written as​:  

R​0​ ≤ 1 + T​F​D s 

where T​F​ is the fraction of the population tested daily, s is the sensitivity of the virus test, and D 
is the average number of days an infected person is contagious. This relationship is 
independent of the details of the underlying network, the type of model (SIQR, MCMC, network, 
etc), and the parameters selected.  It simply balances the rates at which people are entering 
and leaving the asymptomatic contagious population (analogous to a conservation law) and can 
be used to estimate the amount of testing required to stabilize any population.  

MIT by the numbers: 

Currently the sensitivity of the PCR test is about 70% and the reported number of days a person 
is contagious ranges approximately from 10-14 (we’ll split the difference and use 12).  

No social distancing:​ In the absence of​ ​social distancing measures on campus, R​0​ may be at the 
high end of the spectrum (probably somewhere between the green box and the dark blue cruise 
ships box in the chart above).  If we take R​0​ to be approximately 7, we would need to test 
(7-1)/(0.7*12) = 71% of the population daily.  This is unlikely to be a feasible long-term strategy 
(although the cost and availability of tests are rapidly decreasing so the outlook may be different 
in the Fall) so current testing efforts will have to be combined with a sensible campus social 
distancing strategy.  However, these numbers also suggest that MIT could handle quite severe 
fluctuations by temporarily ramping up testing frequencies until the surge subsides.  

Reducing R​0​:​ Taking an example from the chart above consider R​0​ = 5 (i.e. a typical R​0​ without 
any social distancing or interventions). If we test every member of the community once per week 
(Q7), our effective R​0​ decreases to:  

R​0,eff​ = 5 / (1 + 0.7 / 7 x 12) = 2.27 

In order to get this below 1, we need to add an additional social distancing measure, e.g. 
masks.  Requiring 80 TPI 2-layer cotton masks ​scales the original R0 by 0.38​, for (nearly) 
complete compliance our effective R​0​ becomes: 

R​0,eff​ =   5 x 0.38 / (1 + 0.7 / 7 x 12) = 0.86 

which is safely below 1. 
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What tests are available?  

Note that at this point we haven’t made any assumptions about  the type of tests. Currently the 
testing landscape includes​ ​PCR virus testing (which we currently do on campus), rapid antigen 
tests (which are now coming to market), and serology tests (which are already available at low 
cost to MIT), all of which serve different purposes.  The table below summarized the current 
state-of-the-art in testing. 

Type Sensitivity Specificity Availability Cost Comments 

RT-PCR 
~70-90` >99 

Multiple labs; 
Broad $20-50 

Already in operation using 
anterior nares swabs; possibility 
for saliva in future 

Antigen 

80 100 

One company 
with EUA; 
others pending $5-10 

Respiratory swabs (anterior 
nares); Several approved; may 
need equipment purchase; 
E25Bio awaiting FDA EUA 

Serology (IgG) 
96.7 >99 

 Under 
$10 

Sensitivity and specificity 
numbers refer to tests 10 days 
after symptoms appear 

 

In both the PCR and antigen tests, the sensitivity is highly correlated with the viral load. On the 
one hand, this means that these tests may miss people early in the infection cycle.  However, 
this may also work to our advantage as we are unlikely to see a negative test for someone who 
is highly contagious.  In addition, it is worth noting that both the science and the practical 
deployment capabilities for all of these tests are advancing rapidly which drives down the cost; 
the cost numbers represent a current snapshot and all three may be lower in the Fall.  

 

MIT by the numbers: 

The only test that is currently suited to identifying and isolating infected people is the PCR test 
(although other testing strategies may become viable by Fall). If we assume that students will be 
on campus for 11 weeks in the Fall (Labor Day through Thanksgiving), then the cost of a weekly 
PCR testing strategy for the entire semester would be between $220 - $550 per person on 
campus (i.e. students, staff, and faculty).  The Broad Institute is currently estimating costs at the 
lower end of that spectrum between $220 - $275 per person for a Q7 testing strategy for the 
entire semester.  (Their cost estimate includes individual kits for self swabbing, transportation of 
tests, and analysis).  

 
 
 



 
Beyond the Basics: Improvements over random testing 

As we alluded to above, there are better strategies than random testing that find infected 
individuals more efficiently (with fewer tests on average).  Two such strategies are ​contact 
tracing, ​and ​identification of hotspots and superspreaders.  

Contact tracing 

Contact tracing aims to find infected individuals efficiently by identifying individuals (“​contacts”​) 
who might have been infected by each known infected individual (each “​index case”​).  Recent 
studies (e.g., ​Tian et al.​, ​Ferretti et al.​, or ​Hellewell et al.​)  suggest contact tracing can 
significantly reduce the spread of disease. With ​manual contact tracing, ​an individual who tests 
positive for the disease (each ​index case​) is promptly interviewed, to quickly identify as many 
contacts as possible who have been exposed to the virus by the index case, and thus perhaps 
been infected.  ​Automated contact tracing ​aims to augment manual contact tracing by enabling 
additional contacts to be quickly identified and notified, using technology (typically, Bluetooth 
functionality on smartphones or fixed beacons) to detect when individuals are close for a 
significant duration.  Currently manual contact tracing is widely used; automated contact tracing 
is still in the research phase, and can not yet be counted on to provide significant public health 
benefits. 

To estimate the added benefit of contact tracing, we can use a similar counting argument as we 
used for random testing above provides a new bound on R​0​:  

R​0​ ≤ (1 + T​F​D s)​2​ / [1 + T​F​D s(1 - C​F​)] 

where C​F​ is the fraction of contacts we find through either manual or automated tracing relative 
to the actual number contacts. 

MIT by the numbers 

Reducing R​0​:​ Taking the same number as in the example above (s = 0.7, D = 12 days, T​F​ = 1/7 
and R​0​ = 5), we can compute the effective R0 if we employ contact tracing and 70% of the 
contacts are known:  

R​0,eff​ = 5 x (1 + 0.7 / 7 x 12 (1 - 0.7) / (1 + 0.7 / 7 x 12)​2​ = 1.4 

which again can be handled with masks or other social distancing protocols.  If on the other 
hand the original R​0​ = 3, then with contact tracing, R​0​ effective becomes: 

R​0,eff​ = 3 x (1 + 0.7 / 7 x 12 (1 - 0.7) / (1 + 0.7 / 7 x 12)​2​ = 0.84 

which is already below 1 and doesn’t require any additional measures. 

https://arxiv.org/abs/2003.07353
https://science.sciencemag.org/content/368/6491/eabb6936
https://science.sciencemag.org/content/368/6491/eabb6936


Hotspots and superspreaders 

While an optimal testing strategy would rely on having perfect information of an individual’s 
movement and behavior overtime, these interactions can be approximated through methods like 
contact tracing, or through inferring their location from building entry. In particular, MIT has the 
capability to require those on campus to use their ID to enter buildings. The data of who enters 
where when can then be used to estimate contacts between individuals. With this estimation, it 
is possible to both identify locations, or ​hotspots​, through which many people pass (and may 
serve as a vector of disease spread) and to trace back the contacts of those who have tested 
positive (potentially filling in the gaps of traditional interview-based contact tracing). Data from 
several studies appears to show that being indoors with poor ventilation can cause higher levels 
of disease transmission, thus identifying these hotspots will be instrumental in mitigating the 
spread of Covid-19 on campus and in the community. Once hotspots are identified they can be 
tested by randomly sampling those who passed through during a certain time window, or by 
pool testing​ a larger portion of that population. Simulations indicate that testing hotspots 
outperforms random testing and has the potential to ​reduce the infection rate by more than 50 
percent​.  

In addition to testing hotspots, identifying ​superspreaders​ can increase the efficiency of the 
testing strategy.  Superspreaders are individuals who come into contact with a large proportion 
of the population or who emit an unusually high viral load (e.g. through sneezing, shouting, or 
simply having a high viral baseline). These individuals have the potential to significantly 
increase the rate of disease spread and detecting and isolating  them -- which may be done 
through a combination of building tracking and contact tracing -- is likely to be advantageous in 
mitigating the spread of Covid-19. 

Pooled testing 

Pooled testing or group testing combines biological specimens from multiple subjects into a 
“common” pool for RT-PCR-based diagnostic confirmation. In its simplest form if the pool tests 
negative, all individuals within the pool are declared to be negative. If the pool tests positive, 
re-testing is required to deconvolve the positive individuals from the negative individuals ​(Bilder 
and Tebbs 2012; Hogan, Sahoo, and Pinsky 2020​, ​IDSS COVID-19 Collaboration​).  

Prevalence rate 
(%)  

Optimal pool 
size 

Reduction in expected 
# of tests (%) 

1 11 80 

3 6 67 

7 4 50 

 
Table taken from ​(Abdalhamid et al. 2020) 
 

https://paperpile.com/c/5O3vf2/jt7I+3WzO
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https://paperpile.com/c/5O3vf2/wTin


Pooled testing works well when the prevalence of the pathogen in the community is low.  The 
table above shows the results reported in ​(Abdalhamid et al. 2020)​ that examine the 
inter-relationships between the overall prevalence of the pathogen in the community, the pool 
size, and the expected increase in testing efficiency.  
 
Pooling will be most effective when the chance of positive detection of SARS-CoV-2 is low, that 
is when the overall prevalence of COVID-19 within the MIT community remains low, less than 
10%. It can also be a useful surveillance tool for identifying asymptomatic individuals, 
increasing testing throughput,  pairing with pods (as described below) and ​increasing overall 
testing efficiency while conserving resources (although there is likely to be some minimal loss of 
sensitivity).  While pooled testing is appealing, it is our understanding that pooled testing has not 
yet been operationalized, but it is our understanding that the Broad Institute is looking into the 
possibility of offering such a service.  
 
Families / pods / cohorts  1

Recently there has been considerable interest around the idea of “pods” i.e. groups of students 
within which social distancing is relaxed much like it is relaxed between family members in a 
household. It is important to state up front that if we ​decrease ​social distancing protocols within 
the pods, we have to make up for that luxury elsewhere e.g. we can compensate by ​increasing 
social distancing measures between members of different pods (though this raises issues 
regarding non-compliance) and/or increasing​ ​our rate of testing. As before, we can derive a 
stability criterion, 

R​o​ ≤ 1 + s n T​F​D 

where R​o​ is now the reproduction number between pods and n is the number of people in the 
pod. In this relationship we have taken advantage of the built-in mechanism for increasing the 
effective testing rate by assuming fast dynamics within the pods such that all members of the 
pod are in the same state i.e. one positive test in a pod results in the entire pod being isolated.  

Up to this point, the stability criterion reflects the conservation-like arguments above and is 
independent of the details of the underlying social network. However, in order to estimate 
numbers for the MIT campus, we now need to take these details into account and make some 
assumptions about the dependence of R​o​ on the number of people within each pod. Two MIT 
groups (Ozdaglar and the IDSS Covid-19 Collaboration) have been working on this problem; the 
stability criterion from both groups takes the form:  

p​o​ f(n) D ≤ 1 + s n T​F​ D 

In selecting the dependence on n, Ozdaglar ​et al​ take f(n) = hn where h is a constant (i.e. each 
of the n students within the pod has h interactions outside the pod), and the IDSS group chose 

1 The authors would like to thank Asu Ozdaglar and Francesca Parise for their valuable input in the 
“Families / pods / cohorts” section.  
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f(n) = n​2​ (i.e.there is a small probability that any of the n students in one pod will interact with 
any of the n students in the other pod so the number of potential interactions scales like n​2​). 

 

MIT by the numbers 

Maximum pod size:​ Taking again T​F​ = 1/7, D = 12 days and s = 70%, we can rearrange the 
stability criteria above to find the maximum allowable pod sizes for p​o​ = 0.02 and 0.05 for both 
models with h = 6 (moderate interactions / non-compliance between pods) and h = 12 (high 
interactions / non-compliance between pods):  

Maximum number of people per pod 

 f(n) = 6n f(n) = 12n f(n) = n​2 

p​o​ = 0.02 4 0 5 

p​o​ = 0.05 0 0 2 

 

These numbers suggest that small pods may be feasible; however the stability boundary is 
sensitive to small changes in p​o​ so pod design should be carefully considered and approached 
with caution. 

 

Other types of testing: serology and waste-water tracking 

For fast-moving viruses (or other diseases), best practice for predicting and detecting outbreaks 
does not rely solely on virus tests (or the equivalent). The reason is simple -- it is hard to find 
positive cases even when a major outbreak is developing because the disease moves through 
people’s bodies relatively quickly. As a complement to viral testing, well-functioning public 
health systems use serology (antibody testing) to determine who has already been exposed to 
the disease.  Because serology provides a historical record of whether an individual has been 
infected, it does not rely on timing the test to the moment that the individual is sick (something 
that is very unlikely when one is only sampling a small fraction of the population).  

Although serology is effective as a tool for population health monitoring, we will not likely rely on 
it for individual diagnostics in the Fall.  However, as a relatively inexpensive alternative, serology 
could potentially be used to concentrate our limited PCR testing resources on e.g. individuals 
who are connected to emerging hotspots and away from people who have already had the 
disease. To estimate the potential savings associated with serology testing, consider a scenario 
in which everyone receives a PCR test every T​PCR​ days (i.e. T​F​ = 1/T​PCR​) and in addition the 
entire population receives a serology test every T​s​ days.  If someone tests positive on a 



serology test k times, we take them out of the PCR testing pool and save the relatively 
expensive PCR tests for the susceptible population.  If r is the ratio of the cost of a serology test 
to the cost of a PCR test and b is the fraction of the population that has already had the virus at 
some time in the past, then the cost of PCR + serology testing is ​lower ​than PCR alone if 

T​s​ > T​PCR​ kr/b 

 

MIT by the numbers 

Consider a PCR weekly testing strategy so T​PCR​ = 7.  The cost of serology testing is roughly an 
order of magnitude cheaper than PCR so we’ll take r = 0.1; if we choose k = 3 (i.e. someone 
has to test positive 3 times on the serology test before they are removed from the PCR testing 
population) and if 10% of the population has had the virus at some time in the past, then we can 
perform serology tests at a rate of: 

7 x 3 x 0.1 / 0.1 = 21 days 

at no extra cost (i.e. the cost savings on PCR balance the cost of the serology test).  

 

Final Thoughts 

Finally we would like to end by going back to the 30,000 foot view.  Looking forward, it is very 
unlikely that our campus will be a COVID-free zone in the fall -- or at any time in the foreseeable 
future.  Unless we wish to shut down ​all​ campus operations, including everything that happens 
in any lab, we must confront this reality.  Investing in our resilience now will serve to safeguard 
the health and wellness of our community, and position MIT as a role model for universities and 
for the entire education sector.  
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