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The purpose of this memo is to summarize various classical and emerging approaches for
epidemic modeling. The goal here is to describe the models and the methods for learning
such models in a data-driven manner as well as utilizing them for various predictive tasks.

1. Background

Overview. Epidemics, such as COVID-19, spread through human interactions. There-
fore, at some level, the precise nature and details of human interactions determine how
epidemics grow and infection spreads. Epidemiologists have studied this phenomenon
and developed remarkably simple, parsimonious models. In addition, at the time of
writing this document, the ongoing pandemic of COVID-19 has resulted in various recent
proposals to better estimate parameters for existing models, as well as proposals of novel
models. We attempt to document such approaches from the biased view of the authors.

At their core, epidemiological methods attempt to model the growth of infections and
the duration of the epidemic using data. The key information fed into these models
involves the number of individuals with infections at any given point of time, the number
of individuals recovered from infection, and the number of deaths. In some cases, clinical
data may be used. In reality, such observations are noisy: there are delays in reporting,
inaccuracies and, most importantly, there is a possibility of lack of detection.

Setup. Throughout the document, let t denote time. We shall assume, unless stated
otherwise, that the unit of time is days. Let S(t) be fraction (or actual number) of the
population that is “susceptible” to receive infection at time t, initially S(0) = 1. Let
I(t) denote the fraction (or actual number) of the population that is actively “infected”
at time t. Let R(t) denote the fraction (or actual number) of the population that has
recovered (or died) at time t. In addition, let E(t) denote the fraction (or actual number)
of the population that is “exposed” to infection at time t.

Organization. We start by describing deterministic mechanistic models from the epi-
demiology literature (see Hethcote 2000, for a recent review). We follow it with statistical
models and approaches to learn these mechanistic models from the data. Finally, we end
with a recent proposal about a non-mechanistic, non-parametric approach introduced by
Sarker & Shah (2020).

2. Deterministic Mechanistic Models

The Susceptible-Infectious-Recovered (SIR) model of epidemics was introduced by Ker-
mack & McKendrick (1927). Kermack and McKendrick model the flow of individual
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agents from the sub-population who are susceptible to a disease into the sub-population
who are infectious and from the infectious sub-population into the sub-population who
have recovered (and are now immune and thus no longer susceptible). Since the seminal
work of Kermack and McKendrick, numerous other models have been proposed to
respresent the flow of agents from and into different subpopulations in response to
epidemics. In what follows, we describe few primary examples of such models.

Susceptible-Infected-Recoverd (SIR) Model. The SIR model utilizes two parame-
ters β and γ, which capture the rate of flow from susceptible to infected, and infected to
recovered (or dead).

dS(t)

dt
= −βS(t)I(t),

dI(t)

dt
= βS(t)I(t)− γI(t),

dR(t)

dt
= γI(t).

Parameter β is the “contact rate”, which captures the ‘interaction frequency’ and ‘infec-
tiousness’ of the disease. Parameter γ captures the “recovery rate” of disease.

In this model, the fraction of individuals susceptible starts with S(0) = 1 and shrinks
as the fraction of infected individuals grows, while the fraction of individuals who are
recovered (or dead) starts with R(0) = 0 and grows as infected individuals recover
or expire. Parameters β and γ determine how the fraction of the infected population,
I(t), evolves over time. I(t) initially increases exponentially, then reaches a plateau, and
eventually shrinks to zero. By definition, S(t) + I(t) +R(t) = 1 for all t.

The Susceptible-Exposed-Infectious-Recovered (SEIR) Model. The SIR model
can be generalized by adding an “exposed” state. Like the SIR model, it is a deterministic
flow model, now with an additional pararmeter ε capturing the rate at which exposed
individuals become infected, modeling the “speed” or “incubation rate” at which exposure
leads to infection. With ε→∞, SEIR becomes SIR. Precisely,

dS(t)

dt
= −βS(t)I(t),

dE(t)

dt
= βS(t)I(t)− εE(t),

dI(t)

dt
= εE(t)− γI(t),

dR(t)

dt
= γI(t).

Introducing Vital Dynamics. The SIR and SEIR model can naturally incorporate
exogenous changes due to natural birth and death as well. In addition, the ‘loss of
immunity’ of recovered individuals can also be added to such dynamics. Below, we present
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such a modification of the SEIR model, also known as the SEIRS model.

dS(t)

dt
= ν − βS(t)I(t)− νS(t) + δR(t),

dE(t)

dt
= βS(t)I(t)− εE(t)− νE(t),

dI(t)

dt
= εE(t)− γI(t)− νI(t),

dR(t)

dt
= γI(t)− δR(t)− νR(t).

Above, ν represents both death and birth rate (assumption is that in the short term,
population is stable) and δ represents the rate at which recovered individuals lose
immunity to become susceptible again.

Accounting for Unobserved Infection. Naturally, in practice not all infected cases
are detected or reported. To address this problem, let’s assume that a fixed proportion
p of individuals who are infectious are reported in the data. Let Io(t) be the fraction
of reported / observed infected population at time t. Then I(t) = Io(t)/p. Let Ro(t) be
the fraction of recovered individuals that were observed to be infected. Assume that the
recovery rate for detected infected and undetected infected is identical. In that case,

dRo(t)

dt
= γIo(t). (2.1)

This implies Ro(t) = pR(t). Now I(t), the true infection rate, increases at rate βS(t)I(t),
and fraction p of it is observed. That is,

dIo(t)

dt
= pβS(t)I(t)− γIo(t) = βS(t)Io(t)− γIo(t). (2.2)

By definition, S(t) = 1− I(t)−R(t). That is, S(t) = 1− Io(t)/p−Ro(t)/p.

We discuss next some potential empirical strategies to estimate p. A fraction of
recovered cases constitute death. Let D(t) be the fraction of the population that has died.
Assume that we observe deaths accurately. Let ρ > 0 be the morbidity rate for a given
disease, i.e.D(t) = ρR(t). Therefore, if we observe Ro(t) andD(t), thenD(t) = ρRo(t)/p.
That is, we can infer ρ/p.

We may have access to data from different regions with different level of testing, i.e.
different values of p. However, it is reasonable to assume ρ to be constant across regions.
This means that the smallest value of D(t)/Ro(t) across such different regional data may
provide an upper bound for ρ. Information about ρ may also be obtained independently
from mortality rates in environments with large proportion of testing. For example, after
adjusting for the age distribution, the Diamond Princess data could be used to produce
a plausible lower bound on ρ (if we assume that clinical care for COVID-19 patients from
the Diamond Princess was of relatively high quality). The mortality rate for Diamond
Princess patients was about 1.7 percent at the time this report was written. Notice,
however, that this estimate is derived for a rather small sample (12 deaths out of 712
patients). Another possible lower bound for ρ is provided by Iceland, where there has
been widespread testing. In Iceland, there have been 8 deaths out of 1739 cases at time
of writing, corresponding to a death rate of 0.5 percent (Johns Hopkins 2020). Plausible
values of ρ can then be used to produce estimates of p for each region.

Dealing with Quarantine, Self-Isolation, Time Varying Dynamics. The response
to the emerging epidemic may lead to interventions that impact the dynamics of the SIR
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or SEIR model. This can be accommodated by allowing for time varying parameters.
That is, β, ε, γ become β(t), ε(t), γ(t) and they may obey specific models themselves. For
example, β(t)may decrease as I(t) increases, capturing interventions like social distancing
when infections are high.

In a recent work, Song et al. (2020) proposes a modification of the SIR model to
allow a state of quarantine. Specifically, a fraction of the susceptible population becomes
quarantined and cannot be infected. This model can be combined with a time-varying
contact rate that results from voluntary self-isolation.

Non-linearities. More complex SIR, SEIR and SEIRS models may incorporate non-
linearities, for example the rate of flow from susceptible into either infectious or exposed
may depend non-linearly on the prevalence of infectious. This could be due to the spatial
structure of the population or heterogeneous mixing in the population. Bjornstad et al.
(2002) shows how models with this property might be estimated from time-series data.

3. Estimation of the SIR model

Overview. In this section, we describe two empirical approaches to the estimation of the
SIR model. The first approach is based on panel data. The second approach is Bayesian
and uses the Markov Chain Monte Carlo (MCMC) method to estimate model parameters.

Panel data estimation of the SIR model. We present here a panel data estimator of
the SIR model. The goal is to produce estimates that can be used to forecast the evolution
of the epidemic and to evaluate the impact of mitigation policies (e.g., lockdown). The
model in this section is a variation of the ones in Cintrón-Arias et al. (2020) and Chen
& Qiu (2020). In order to describe the estimation method in terms of quantities directly
available in the data, we consider a SIR model with un-normalized variables. That is, in
this section I(t), R(t), and S(t) represent the number (not fraction) of individuals that are
infected, recovered and susceptible. Let N represent the total population. To simplify the
exposition, we will assume that, at the time scale of interest, total population experiences
negligible variation. Otherwise, population changes can easily be incorporated in the
model. The discrete dynamics of the SIR model can be written as

∆S(t) = −β I(t)
N

S(t),

∆I(t) = β
I(t)

N
S(t) + γI(t),

∆R(t) = γI(t).

We will also assume that, at time t = 0, R(0) = 0 and hence S(0) + I(0) = N . We will
initially assume that I(0) is known or can be estimated/approximated in a first step.
Later, we will incorporate the initial value of I(t) as a parameter to be estimated.

Assume there are n states in the data (j = 1, . . . , n), with available observations for
T +1 time steps (0, . . . , T ). Let the time-varying parameters be βj(t) and γj(t) for state j
and time t. The data contains information on new cases, ∆Ij(t)+∆Rt(t) and “recoveries”
∆Rj(t) (which include deaths). For state j, the model gives

∆Ij(t) +∆Rj(t) = βj(t)
Sj(t)

Nj
Ij(t), (3.1)

∆Rj(t) = γj(t)Ij(t), (3.2)
Sj(t) = Nj − Ij(t)−Rj(t).
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The simplest way to proceed now is to separately identify and estimate γj(t) as the
inverses of times to recovery in different states and time periods. For the contact rates,
assume

βj(t) = exp
(
δ(t)(θ) +Xj(t)

Tβ
)
, (3.3)

where Xj(t) collects the values of a set of observed variables which may include char-
acteristics of the state (e.g., population density) and policy variables (e.g., lockdown)
for state j at time t, and θ and β are vectors of parameters. δ(t) could be completely
unrestricted (i.e., time “fixed effects”) or modeled arbitrarily (e.g., as a polynomial in t).
Now, the parameters of the model can be estimated by least squares:

minimize
θ,β

n∑
j=1

T−1∑
t=0

(
∆Ij(t) +∆Rj(t)−

Sj(t)Ij(t)

Nj
exp

(
δ(t)(θ) +Xj(t)

Tβ
))2

. (3.4)

The model can be estimated with data on detected cases provided that S(t) is adjusted
for undetected cases, as explained above. Notice also that Ij(0) could be included as a
parameter to be estimated in this regression, in which case we would have to evaluate
Ij(t) and Sj(t) as functions of Ij(0). Estimates would potentially be subject to bias when
the number of periods, T+1, in the data is small. Plausible scales of the bias for available
sample sizes could be investigated via simulations. It is also possible to estimate γj(t) in
the same step as θ and β by adding to the objective function a second sum of squares
based on equation (3.2), as in Chen & Qiu (2020).

A Bayesian Approach for Parameter Estimation. In a recent work, Song et al.
(2020) employ and expand upon methods introduced in Osthus et al. (2017) (who model
the spread of seasonal influenza) to model the spread of COVID-19. Specifically, Song
et al. (2020) build on the classic linear SIR model by allowing for measurement error of the
prevalence of infectious and recovered individuals. They also provide two alternatives for
modeling the effect of self-isolation and quarantine. They carry out Bayesian estimation
of their model using Markov Chain Monte Carlo with priors over the unknown parameters
based on estimates from the SARS outbreak in the early 2000s. Their work is reproducible
in the sense that the implementation in R is made available.

To that end, let Y I(t), Y R(t) be noisy measurements of I(t), R(t) respectively. Given
S(t), I(t), R(t), the observations Y I(t), Y R(t) are modeled to have Beta-distribution,
which has support on [0, 1]. Specifically, Y I(t) is distributed as Beta(λII(t), λI(1− I(t)))
and Y R(t) is distributed as Beta(λRR(t), λR(1−R(t))). Thus,

E[Y I(t)|I(t)] = I(t) and E[Y R(t)|R(t)] = R(t).

In addition to the measurement error, Song et al. (2020) and Osthus et al. (2017) add a
stochastic component to the SIR dynamics.

In Song et al. (2020), self-isolation / quarantine is captured in two alternative ways.
First, they replace the constant contact rate β with a time-varying rate πtβ, where πt
is treated as known rather than estimated from the data. They consider either πt to be
a step function that jumps downwards by some amount in response to the imposition
of a quarantine or to be an exponential function of time. In an alternative formulation,
Song et al. (2020) assume that upon the imposition of a quarantine at time t, a fixed
proportion φt of the susceptible individuals enter a quarantine state which they do not
leave. Again φt is treated as known.
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Figure 1. Typical growth and evolution under SEIR model (from Wikipedia).

4. A Non-mechanistic, Non-parametric Approach

We next describe a recent proposal for a non-mechanistic, non-parametric approach. The
description below is based on promising, preliminary work by Sarker & Shah (2020).

A Challenge with the Mechanistic Models. The SIR, SEIR, and SEIRS models
fundamentally assume that the entire population is going through similar phenomenon
simultaneously. But as observed by Chen & Qiu (2020), the growth across geographically
separated different countries may be evolving in accordance with different models (even
if we assume SIR is the correct model for each country individually). In a similar manner,
in any state or county the epidemic or spread of infection may be evolving with multiple
growth clusters. And the number of growth clusters might change in time. To address
these challenges, Sarker & Shah (2020) introduces a non-mechanistic, non-parametric
model that we describe next.

Some background. The aspect of growth of an epidemic that SEIR-like models capture
well is the initial exponential growth, followed by a slowdown due to saturation, followed
by eventual recovery as seen in Figure 1. However, such growths are likely happening
in different clusters with each growth cluster having different characteristics / scale as
well as time scales at which they evolve. Now, assume each growth cluster’s evolution
obeys generic form of exp(−f(t)) where f(·) is a strongly convex function. For example,
f(t) = at2 + bt + c with a > 0. Indeed, such form is observed for SEIR like models as
well. Therefore, for the purpose of prediction, Sarker & Shah (2020) propose to utilize
such a non-mechanistic, non-parametric model.
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Figure 2. Model fit (R2 = 0.99) with single component to daily COVID-19 cases in Italy
(Courtesy: David Gamarnik, MIT).

A Non-mechanistic, Non-parametric Model. Let F (t) ≡ ∆(I(t)+R(t)) denote the
new infections at time t. Then,

F (t) =
( r(t)∑

k=1

exp(−akt2 − bkt− ck)
)
(1 + ε(t)), (4.1)

where each ak > 0, ∀ k > 1, r(t) > 1 is number of “clusters” observed till time t, ε(t) is
independent random variable with zero mean representing measurement error.

Preliminary results. To start with, we discuss preliminary results that provide
evidence of support for the model. To that end, we utilize the data made available
through the GitHub repository of The New York Times about number of cases reported,
number of deaths at county level in United States as well as the Github repository of
JHU for world-wide, global data.

Model Fit To Country-level Data: A Single Mixture. We start by verifying whether the
exponential of a quadratic function is a reasonable form for capturing the growth of
epidemic. To that end, we start by modeling growth in Italy through a single mixture.
As shown in Figure 2, we find a remarkable fit of the model with R2 = 0.99.

Model Fit To State-level Data: Multiple Mixtures. Next, we consider state-level growth
data in the US. In particular, we focus on the growth data in New York State. Clearly,
NYC has been a prominent growth cluster. But, in addition, there are other growth
clusters. And indeed, as we fit a mixture of two clusters to NY state-level data, we find
excellent fit as well as predictive power in the model. Specifically, as shown in Figure 3,
we fit the model using “Orange” data which visually does not show multiple clusters, but
as seen by “Green” test data, our two cluster model fit manages to predict well.

Evidence of Multiple Mixtures. The quantity logF (t + 1)/F (t) (ignoring noise term),
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Figure 3. Model fit with two component to daily COVID-19 cases in NY State with second
growth cluster predicting the future increase followed by a dip accurately.

Figure 4. F (t) and logF (t+ 1)/F (t) for a mixture of (synthetic) exponential curves.

evolves as differences of two log-exp-sums. If the growth indeed obeyed single mixture,
then this would be linear in t. On the other hand, if it was multiple mixtures, then
it would look more like piece-wise linear function with connections between piece-wise
linear components being non-linear curves, as in Figure 4. In fact, as seen in Figure 5,
such piece-wise linear curves are evident in empirical COVID-19 data.

Predicting Apex. Using this model, assuming no new growth cluster emerges, we can
predict the “apex” dates for California and Louisiana as shown in Figures 6 and 7. Using
the single mixture fit to the most recent growth cluster via quadratic regression technique,
we can find the uncertainty band around apex. In particular, Figure 8 plots the apex
estimates for various counties in US.

Parameter Fit Using Alternating Minimization. Given observations F (t), t ∈ {0, . . . , T},
and a choice of the number of growth clusters, r = r(T ) (which could be 1 + the
number of piece-wise components observed in plot of logF (t + 1)/F (t), t ∈ {0, . . . , T}),
we present a simple, heuristic algorithm to fit the model parameters. Specifically, we wish
to find parameters (ak, bk, ck), k 6 r with ak > 0, k 6 r. To start with, initialize each
of these parameters subject to non-negativity constraints ak > 0, k 6 r. Then, in each
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Figure 5. Plot of log(F (t + 1)/F (t)) across states resembling multiple piece-wise near-linear
segments, each piece effectively corresponding to different growth cluster (Courtesy: Peko Hosoi,
MIT).

iteration, one-by-one, for each k 6 r, keeping all other (a`, b`, c`), ` 6= k fixed, find best
fit for (ak, bk, ck) subject to ak > 0. Repeat for some large number of iterations or until
parameters stop changing beyond a small threshold.
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Figure 6. The estimation of apex in California using the model (Courtesy: Yash Deshpande,
MIT).
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Figure 7. The estimation of apex in Louisiana using the model (Courtesy: Yash Deshpande,
MIT).
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Figure 8. The estimation of apex with uncertainty in various counties in US with day 0 =
January 20, 2020. Using the standard quadratic regression method, the parameter uncertainty
is evaluated. The estimation of apex is given by ratio b1/a1 (under single mixture model
assumption) and the uncertainty in apex is obtained by taking lower and upper bound of this
ratio by using the 95% upper and lower bound on each of these parameters. (Courtesy: Hamsa
Balakrishnan, MIT).
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